1091. Shortest Path in Binary Matrix
Given an n x n
binary matrix grid
, return the length of the shortest clear path in the matrix. If there is no clear path, return -1
.
A clear path in a binary matrix is a path from the top-left cell (i.e., (0, 0)
) to the bottom-right cell (i.e., (n - 1, n - 1)
) such that:
- All the visited cells of the path are
0
. - All the adjacent cells of the path are 8-directionally connected (i.e., they are different and they share an edge or a corner).
The length of a clear path is the number of visited cells of this path.
Example 1:
Example 2:
Example 3:
Constraints:
n == grid.length
n == grid[i].length
1 <= n <= 100
grid[i][j] is 0 or 1
Solution:
class Solution {
int[][] directions = {{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}, {0, 1}, {1, -1}, {1, 0}, {1, 1}};
// public int result;
public int shortestPathBinaryMatrix(int[][] grid) {
int n = grid.length;
if (n == 1 && grid[0][0] == 0){
return 1;
}
// bfs
// queue
int x = 0;
int y = 0;
int index = 0;
int[][] visited = new int[n][n];
return bfs(x, y, grid, n, index, visited);
}
private int bfs(int x, int y, int[][] grid, int n, int index, int[][] visited){
Deque<int[]> queue = new ArrayDeque<int[]>();
if (grid[x][y] != 0){
return -1;
}
queue.offerLast(new int[]{x,y});
visited[0][0] = 1;
while(!queue.isEmpty()){
int size = queue.size();
index++;
for (int i = 0; i < size; i++){
int[] cur = queue.pollFirst();
int curX = cur[0];
int curY = cur[1];
if (curX == n - 1 && curY == n -1){
return index;
}
for (int[] dir : directions){
int nextX = dir[0] + curX;
int nextY = dir[1] + curY;
if(nextX >= 0 && nextY >= 0 && nextX < n && nextY < n && visited[nextX][nextY] == 0 && grid[nextX][nextY] == 0){
queue.offerLast(new int[]{nextX, nextY});
visited[nextX][nextY] = 1;
}
}
}
}
return -1;
}
}
// TC: O(n^2)
// SC: O(n^2)