Skip to content

1143. Longest Common Subsequence

Given two strings text1 and text2, return the length of their longest common subsequence. If there is no common subsequence, return 0.

A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.

  • For example, "ace" is a subsequence of "abcde".

A common subsequence of two strings is a subsequence that is common to both strings.

Example 1:

Input: text1 = "abcde", text2 = "ace" 
Output: 3  
Explanation: The longest common subsequence is "ace" and its length is 3.

Example 2:

Input: text1 = "abc", text2 = "abc"
Output: 3
Explanation: The longest common subsequence is "abc" and its length is 3.

Example 3:

Input: text1 = "abc", text2 = "def"
Output: 0
Explanation: There is no such common subsequence, so the result is 0.

Solution:

Screenshot 2024-11-29 at 18.09.11

Screenshot 2024-11-29 at 18.09.48

Screenshot 2024-11-29 at 18.11.00

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        char[] s = text1.toCharArray();
        char[] t = text2.toCharArray();

        int n = s.length;
        int m = t.length;
        int index1 = n - 1;
        int index2 = m - 1;
        return dfs(index1, index2, t, s);
    }

    private int dfs(int index1, int index2, char[] t, char[] s){
        if (index1 < 0 || index2 < 0){
            return 0;
        }

        if (s[index1] == t[index2]){
            return dfs(index1 - 1, index2 - 1, t, s) + 1;
        }

        return Math.max(dfs(index1 - 1, index2, t, s), dfs(index1, index2 - 1, t, s));
    }
}

// TC: O(n!)
// SC: O(n)
class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        char[] s = text1.toCharArray();
        char[] t = text2.toCharArray();

        int n = s.length;
        int m = t.length;
        int index1 = n - 1;
        int index2 = m - 1;
        int[][] memo = new int[n][m];
        for (int[] row : memo){
            Arrays.fill(row, -1);
        }
        return dfs(index1, index2, t, s, memo);
    }

    private int dfs(int index1, int index2, char[] t, char[] s, int[][] memo){
        if (index1 < 0 || index2 < 0){
            return 0;
        }

        if (memo[index1][index2] != -1){
            return memo[index1][index2];
        }

        if (s[index1] == t[index2]){
            return memo[index1][index2] = dfs(index1 - 1, index2 - 1, t, s, memo) + 1;
        }

        return memo[index1][index2] = Math.max(dfs(index1 - 1, index2, t, s, memo), dfs(index1, index2 - 1, t, s, memo));
    }
}

// TC: O(n * m)
// SC: O(n * m)

二、1:1 翻译成递推

Screenshot 2024-11-29 at 18.26.02

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int[][] longest = new int[text1.length()+1][text2.length() +1];
        for (int i = 1; i <= text1.length(); i++){
            for (int j = 1; j <= text2.length(); j++){
                if (text1.charAt(i - 1) == text2.charAt(j-1)){
                    longest[i][j] = longest[i-1][j-1] + 1;
                } else {
                    longest[i][j] = Math.max(longest[i - 1][j], longest[i][j-1]);
                }
            }
        }

        return longest[text1.length()][text2.length()];

    }
}

// TC: O(n^2)
// SC: O(n^2)
/*  
                    i
        - a b c
      - 0 0 0   0
      d 0 0 0   0               j  
      e 0 0 0 0
      f 0 0 0 0
      a 0 1 0 0
      f 0 1 1 1
      c 0 1 1 2
M[i-1][j] is from
1 + M[i - 1][j - 1] > M[i-1][j-1]
Math.max(M[i-2][j], M[i-1][j-1]) >= M[i-1][j-1]

res  = dp[n][m] -> 一直在继承, 从来没有东山再起
*/

M[i][j] represents the length of the longest subsequences between a[0... i -1] (first i letters of a) and b[0 ... j -1] (first j letters of b)

M[i][j -1]

M[i - 1][j]

Base case

M[0][0] = 0

M[i][0] = 0

M[0][j] = 0

Induction rule

Case 1: M[i][j] = 1 + M[i -1][j -1] if a[i - 1] == b[j-1]

Case 2: M[i][j] = max(M[i -1][j], M[i][j -1]) else a[i-1] != b[j-1]

TC: O(n*m) * O(1) =O(n*m)

SC: O(n * m) => optimize O(n)

三 空间优化:两个数组(滚动数组)

空间优化:一个数组