127. Word Ladder
A transformation sequence from word beginWord
to word endWord
using a dictionary wordList
is a sequence of words beginWord -> s1 -> s2 -> ... -> sk
such that:
- Every adjacent pair of words differs by a single letter.
- Every
si
for1 <= i <= k
is inwordList
. Note thatbeginWord
does not need to be inwordList
. sk == endWord
Given two words, beginWord
and endWord
, and a dictionary wordList
, return the number of words in the shortest transformation sequence from beginWord
to endWord
, or 0
if no such sequence exists.
Example 1:
Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
Output: 5
Explanation: One shortest transformation sequence is "hit" -> "hot" -> "dot" -> "dog" -> cog", which is 5 words long.
Example 2:
Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
Output: 0
Explanation: The endWord "cog" is not in wordList, therefore there is no valid transformation sequence.
Solution:
class Solution {
static class Pair{
String word;
int step;
Pair(String word, int step){
this.word = word;
this.step = step;
}
}
public int ladderLength(String beginWord, String endWord, List<String> wordList) {
Queue<Pair> queue = new LinkedList<Pair>();
queue.add(new Pair(beginWord, 1));
Set<String> set = new HashSet<String>();
int len = wordList.size();
for (int i = 0; i < len; i++){
set.add(wordList.get(i));
}
set.remove(beginWord);
while(!queue.isEmpty()){
Pair cur = queue.poll(); // <hit, 1>
String curWord = cur.word; // hit
int curStep = cur.step; // 1
if (curWord.equals(endWord)){
return curStep;
}
for (int i = 0; i < curWord.length(); i++){ // 3
for (char ch = 'a'; ch <= 'z'; ch++){//
char[] rCharArray = curWord.toCharArray(); // h i t
rCharArray[i] = ch; // h i t => a i t
String replaceWord = new String(rCharArray); // ait
if (set.contains(replaceWord)){
queue.add(new Pair(replaceWord, curStep + 1));
set.remove(replaceWord);
}
}
}
}
return 0;
}
}
// TC: O(N * L * 26) N: wordlist.length L word.length
// SC: O(N)