131. Palindrome Partitioning131. Palindrome Partitioning
Given a string s
, partition s
such that every substring of the partition is a palindrome. Return all possible palindrome partitioning of s
.
Example 1:
Example 2:
Solution:
Approach 1: 输入视角 (逗号选或不选)
假设每对相邻字符之间有个逗号, 那么久看每个逗号选还是不选
也可以理解成: 是否要把s[i] 当成分割出的子串的最后一个字符. 注意s[n - 1] 一定是最后一个字符, 一定要选.
class Solution {
public List<List<String>> partition(String s) {
List<List<String>> result = new ArrayList<>();
int start = 0;
int end = 0;
List<String> subResult = new ArrayList<>();
backtracking(start, end, s, result, subResult);
return result;
}
private void backtracking(int start, int end, String s, List<List<String>> result, List<String> subResult){
if (end == s.length()){
result.add(new ArrayList<>(subResult));
return;
}
if (end < s.length() - 1){
backtracking(start, end + 1, s, result, subResult);
}
if (isP(s, start, end)){
subResult.add(s.substring(start, end + 1));
backtracking(end + 1, end + 1, s, result, subResult);
subResult.remove(subResult.size() - 1);
}
}
private boolean isP(String s, int left, int right){
while(left < right){
if (s.charAt(left) != s.charAt(right)){
return false;
}
left++;
right--;
}
return true;
}
}
// TC: O(n * 2^n)
// SC: O(n)
Approach 2: 答案视角(枚举子串结束位置)
class Solution {
public List<List<String>> partition(String s) {
List<List<String>> result = new ArrayList<List<String>>();
List<String> subResult = new ArrayList<String>();
int start = 0;
helper(s, 0, subResult, result);
return result;
}
private void helper(String s, int start, List<String> subResult, List<List<String>> result){
if (start == s.length()){
result.add(new ArrayList<>(subResult));
return;
}
for (int end = start; end < s.length(); end++){
if (isPalindrome(s, start, end)){
subResult.add(s.substring(start, end + 1));
helper(s, end + 1, subResult, result);
subResult.remove(subResult.size() - 1);
}
}
}
private boolean isPalindrome(String s, int left, int right){
while (left < right){ // O(n)
if (s.charAt(left) != s.charAt(right)){
return false;
}
left++;
right--;
}
return true;
}
}
//TC: O(n*2^n)
//The primary time-consuming part is the backtracking process. In the worst case, we have to explore every possible partition of the string. For a string of length n, there are 2^(n-1) partitions (since at each position in the string, we can choose to either make a cut or not, except at the end).
//SC: O(n) // length of string
class Solution {
public List<List<String>> partition(String s) {
int len = s.length();
boolean[][] dp = new boolean[len][len];
for (int right = 0; right < len; right++){
for (int left = 0; left <= right; left++){
if (s.charAt(left) == s.charAt(right) && (right - left <= 2 || dp[left + 1][right - 1])){
dp[left][right] = true;
}
}
}
List<List<String>> result = new ArrayList<List<String>>();
List<String> subResult = new ArrayList<String>();
int start = 0;
helper(s, start, subResult, result, dp);
return result;
}
private void helper(String s, int start, List<String> subResult, List<List<String>> result, boolean[][] dp){
if (start >= s.length()){
result.add(new ArrayList<String>(subResult));
return;
}
for (int end = start; end < s.length(); end++){
if (dp[start][end]){
subResult.add(s.substring(start, end+1));
helper(s, end+1, subResult, result, dp);
subResult.remove(subResult.size() -1);
}
}
}
}
// TC: O(n * 2^n)
// SC: O(n^2)