15. 3Sum
Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]]
such that i != j
, i != k
, and j != k
, and nums[i] + nums[j] + nums[k] == 0
.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].
Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Example 3:
Solution:
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
// Assumptions: array is not null, array.length >= 3
List<List<Integer>> result = new ArrayList<List<Integer>>();
Arrays.sort(nums);
int target = 0;
for (int i = 0; i < nums.length -2; i++){
//The goal is to find i < j < k, such that
// nums[i] + nums[j] + nums[k] == 0;
// To make sure there is no duplicate possible i.
// e.g. if we have 2,2,2 only the first 2 will be selected as i.
if (i > 0 && nums[i] == nums[i-1]){
continue;
}
int left = i + 1;
int right = nums.length - 1;
while(left < right){
int tmp = nums[left] + nums[right];
if (nums[i] + tmp == target){
result.add(Arrays.asList(nums[i], nums[left], nums[right]));
left++;
// ignore all possibel duplicate j as well
while (left < right && nums[left] == nums[left -1]){
left++;
}
}else if (tmp + nums[i] < target){
left++;
}else {
right--;
}
}
}
return result;
}
}
// TC: O(n^2)
// SC: O(n)
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
// Sort the array
Arrays.sort(nums);
for (int i = 0; i < nums.length -2; i++){
// Skip duplicate elements for i
if (i > 0 && nums[i] == nums[i-1]){
continue;
}
int j = i + 1;
int k = nums.length - 1;
while (j < k){
int sum = nums[i] + nums[j] + nums[k];
if (sum == 0){
result.add(Arrays.asList(nums[i], nums[j], nums[k]));
// Skip duplicate elements for j
while(j <k && nums[j] == nums[j+1]){
j++;
}
// Move the pointers
j++;
k--;
}else if (sum < 0){
// Sum is less than zero, increment j to increase the sum
j++;
}else {
// Sum is greater than zero, decrement k to decrease the sum
k--;
}
}
}
return result;
}
}
// TC: O(n^2)
// SC: O(n) // sort quick sort O(n)
/*
[-1, -1, 2], [-1, 0, 1]
[-1,0,1,2,-1,-4]
[-4, -1, -1, 0 , 1 , 2]
i
l
r
*/