216. Combination Sum III
Find all valid combinations of k
numbers that sum up to n
such that the following conditions are true:
- Only numbers
1
through9
are used. - Each number is used at most once.
Return a list of all possible valid combinations. The list must not contain the same combination twice, and the combinations may be returned in any order.
Example 1:
Input: k = 3, n = 7
Output: [[1,2,4]]
Explanation:
1 + 2 + 4 = 7
There are no other valid combinations.
Example 2:
Input: k = 3, n = 9
Output: [[1,2,6],[1,3,5],[2,3,4]]
Explanation:
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
There are no other valid combinations.
Example 3:
Input: k = 4, n = 1
Output: []
Explanation: There are no valid combinations.
Using 4 different numbers in the range [1,9], the smallest sum we can get is 1+2+3+4 = 10 and since 10 > 1, there are no valid combination.
Constraints:
2 <= k <= 9
1 <= n <= 60
Solution:
class Solution {
public List<List<Integer>> combinationSum3(int k, int n) {
List<List<Integer>> result = new ArrayList<>();
List<Integer> subResult = new ArrayList<>();
int index = 1;
int curSum = 0;
backtrack(index, k, n,subResult, result, curSum);
return result;
}
private void backtrack(int index, int k, int n, List<Integer> subResult, List<List<Integer>> result, int curSum){
if (subResult.size() == k || curSum > n){
if (curSum == n){
result.add(new ArrayList<>(subResult));
}
return;
}
for (int i = index; i <= 9; i++){
subResult.add(i);
backtrack(i + 1, k, n, subResult, result, curSum + i);
subResult.remove(subResult.size() -1);
}
return;
}
}
// TC: O(kC_n^k)
// SC: O(k)
class Solution {
public List<List<Integer>> combinationSum3(int k, int n) {
List<List<Integer>> result = new ArrayList<>();
List<Integer> subResult = new ArrayList<>();
int curSum = 0;
int index = 1;
backtracking(index,n, k, curSum, subResult, result);
return result;
}
private void backtracking(int index, int n, int k, int curSum, List<Integer> subResult, List<List<Integer>> result){
if (subResult.size() == k){
if (curSum == n){
result.add(new ArrayList<>(subResult));
}
return;
}
if (subResult.size() > k){
return;
}
if (curSum > n){
return;
}
for(int i = index; i <= 9; i++){
subResult.add(i);
backtracking(i + 1, n, k , curSum + i, subResult, result);
subResult.remove(subResult.size() - 1);
}
}
}