2316. Count Unreachable Pairs of Nodes in an Undirected Graph
You are given an integer n
. There is an undirected graph with n
nodes, numbered from 0
to n - 1
. You are given a 2D integer array edges
where edges[i] = [ai, bi]
denotes that there exists an undirected edge connecting nodes ai
and bi
.
Return the number of pairs of different nodes that are unreachable from each other.
Example 1:
Input: n = 3, edges = [[0,1],[0,2],[1,2]]
Output: 0
Explanation: There are no pairs of nodes that are unreachable from each other. Therefore, we return 0.
Example 2:
Input: n = 7, edges = [[0,2],[0,5],[2,4],[1,6],[5,4]]
Output: 14
Explanation: There are 14 pairs of nodes that are unreachable from each other:
[[0,1],[0,3],[0,6],[1,2],[1,3],[1,4],[1,5],[2,3],[2,6],[3,4],[3,5],[3,6],[4,6],[5,6]].
Therefore, we return 14.
Constraints:
1 <= n <= 105
0 <= edges.length <= 2 * 105
edges[i].length == 2
0 <= ai, bi < n
ai != bi
- There are no repeated edges.
Solution:
class Solution {
public long countPairs(int n, int[][] edges) {
Map<Integer, List<Integer>> graph = new HashMap<>();
for (int i = 0; i < n; i++){
graph.put(i, new ArrayList<>());
}
for (int[] edge : edges){
int from = edge[0];
int to = edge[1];
graph.get(from).add(to);
graph.get(to).add(from);
}
// 0: 1, 2, 3, 4
Set<Integer> visited = new HashSet<>();
List<Integer> s = new ArrayList<>();
for (int i = 0; i < n; i++){
if (!visited.contains(i)){
int cur = dfs(i, visited, graph);
s.add(cur);
}
}
// int result = 0;
// for (int i = 0; i < s.size() - 1; i++){
// int cur = s.get(i);
// for (int j = i + 1; j < s.size(); j++){
// int next = s.get(j);
// result = result + cur * next;
// }
// }
long totalPairs = (long) n * (n - 1) / 2;
long reachablePairs = 0;
for (int size : s){
reachablePairs += (long) size * (size - 1) /2;
}
// 强制转换size 为long之前进行乘法运算.
return totalPairs - reachablePairs;
}
private int dfs(int i, Set<Integer> visited, Map<Integer, List<Integer>> graph){
if (visited.contains(i)){
return 0;
}
visited.add(i);// 0
int count = 1; // 0
List<Integer> nei = graph.get(i);
for (int next : nei){
if (!visited.contains(next)){
count = count + dfs(next, visited, graph);
}
}
return count;
}
}
/*
7 - 3 = 4
4
4*1 + 4 * 2 + 1* 2 = 4 + 8 + 2 = 14
*/