235. Lowest Common Ancestor of a Binary Search Tree
Given a binary search tree (BST), find the lowest common ancestor (LCA) node of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p
and q
as the lowest node in T
that has both p
and q
as descendants (where we allow a node to be a descendant of itself).”
Example 1:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
Output: 6
Explanation: The LCA of nodes 2 and 8 is 6.
Example 2:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
Output: 2
Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
Example 3:
Constraints:
- The number of nodes in the tree is in the range
[2, 105]
. -109 <= Node.val <= 109
- All
Node.val
are unique. p != q
p
andq
will exist in the BST.
Solution:
-
当前节点是空节点 不用判断
p
andq
will exist in the BST. -
p和q都在左子树: 返回递归左子树的结果
-
p和q都在右子树: 返回递归右子树的结果
-
其他:
4.1 p和q分别在左右子树
4.2 当前节点是p
4.3 当前节点是q
返回当前节点
搜索树的好处: 提前剪枝
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
int cur = root.val;
if (p.val < cur && q.val < cur){
return lowestCommonAncestor(root.left, p, q);
}
if (p.val > cur && q.val > cur){
return lowestCommonAncestor(root.right, p, q);
}
return root;
}
}
// TC: O(n)
// SC: O(n)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
// base case
if (root == null){
return null;
}
if (root == p || root == q){
return root;
}
TreeNode left = lowestCommonAncestor(root.left, p, q);
TreeNode right = lowestCommonAncestor(root.right, p, q);
if (left != null && right != null){
return root;
}
if (left == null && right == null){
return null;
}
if (left != null){
return left;
}else{
return right;
}
}
}
/*
case 1 : root.left == null && root.right == null -> return null
case 2 : root.left != null || root.right != null -> return not null side like root.left or root.right
case 3 : root.left && root.right != null return root;
*/
// TC: O(n)
// SC: O(n)
Binary Search Tree (BST): Due to the inherent property of a BST (left child is smaller, and right child is larger), finding the LCA is relatively easier and can be done in a more straightforward manner.
很熟悉 嗯 ... 然后卡着了