236. Lowest Common Ancestor of a Binary Tree
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p
and q
as the lowest node in T
that has both p
and q
as descendants (where we allow a node to be a descendant of itself).”
Example 1:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output: 3
Explanation: The LCA of nodes 5 and 1 is 3.
Example 2:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
Output: 5
Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
Example 3:
Solution:
分类讨论:
-
当前节点是空节点 \
-
当前节点是p --- 返回当前节点
-
当前节点是q /
- 其他: 是否找到p或q:
4.1 左右子树都找到 -- 返回当前节点
4.2 只有左子树找到 -- 返回递归左子树的结果
4.3 只有右子树找到 -- 返回递归右子树的结果
4.4 左右子数都没有找到 -- 返回空节点
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
// base case
if (root == null){
return null;
}
if (root == p || root == q){
return root;
}
TreeNode left = lowestCommonAncestor(root.left, p, q);
TreeNode right = lowestCommonAncestor(root.right, p, q);
if (left != null && right != null){
return root;
}
if (left == null && right == null){
return null;
}
if (left != null){
return left;
}else{
return right;
}
}
}
// TC: O(n)
// SC: O(n)