268. Missing Number
Given an array nums
containing n
distinct numbers in the range [0, n]
, return the only number in the range that is missing from the array.
Example 1:
Input: nums = [3,0,1]
Output: 2
Explanation: n = 3 since there are 3 numbers, so all numbers are in the range [0,3]. 2 is the missing number in the range since it does not appear in nums.
Example 2:
Input: nums = [0,1]
Output: 2
Explanation: n = 2 since there are 2 numbers, so all numbers are in the range [0,2]. 2 is the missing number in the range since it does not appear in nums.
Example 3:
Input: nums = [9,6,4,2,3,5,7,0,1]
Output: 8
Explanation: n = 9 since there are 9 numbers, so all numbers are in the range [0,9]. 8 is the missing number in the range since it does not appear in nums.
Solution:
Approach #1 Sorting:
class Solution {
public int missingNumber(int[] nums) {
Arrays.sort(nums);
int result = nums.length;
for (int i = 0; i < nums.length; i++){
if (nums[i] != i){
result = i;
break;
}
}
return result;
}
}
// TC: O(nlogn)
// SC: O(1)
Approach #2 HashSet:
class Solution {
public int missingNumber(int[] nums) {
// base case
if (nums == null || nums.length == 0){
return -1;
}
Set<Integer> set = new HashSet<Integer>();
for (int i = 0; i < nums.length; i++){
set.add(nums[i]);
}
int result = nums.length;
for (int i = 0; i < nums.length; i++){
if (!set.contains(i)){
result = i;
break;
}
}
return result;
}
}
// TC: O(n)
// SC: O(n)
Approach #3 Bit Manipulation:
class Solution {
public int missingNumber(int[] nums) {
int missing = nums.length;
for (int i = 0; i < nums.length; i++) {
missing ^= i ^ nums[i];
}
return missing;
}
}
\[
\begin{align}
result & = 3 \oplus (0 \oplus 3) \oplus (1 \oplus 0) \oplus (2 \oplus 1)\\
& = b11 \oplus (b00 \oplus b11) \oplus (b01 \oplus b00) \oplus (b10 \oplus b01)\\
& = b11 \oplus b11 \oplus b01 \oplus b11 \\
& = b00 \oplus b10 \\
& = b10 \\
& = 2
\end{align}
\]
Approach #4 Gauss' Formula:
class Solution {
public int missingNumber(int[] nums) {
int expectedSum = (0 + nums.length) * (nums.length+1) /2;
int sum = 0;
for (int i = 0; i < nums.length; i++){
sum = sum + nums[i];
}
int result = expectedSum - sum;
return result;
}
}
// TC: O(n)
// SC: O(1)
\[
\sum_{i=0}^n = \frac{n(n+1)}{2}
\]