Skip to content

287. Find the Duplicate Number

Given an array of integers nums containing n + 1 integers where each integer is in the range [1, n] inclusive.

There is only one repeated number in nums, return this repeated number.

You must solve the problem without modifying the array nums and uses only constant extra space.

Example 1:

Input: nums = [1,3,4,2,2]
Output: 2

Example 2:

Input: nums = [3,1,3,4,2]
Output: 3

Example 3:

Input: nums = [3,3,3,3,3]
Output: 3

Constraints:

  • 1 <= n <= 105
  • nums.length == n + 1
  • 1 <= nums[i] <= n
  • All the integers in nums appear only once except for precisely one integer which appears two or more times.

Follow up:

  • How can we prove that at least one duplicate number must exist in nums?
  • Can you solve the problem in linear runtime complexity?

Solution:

Floyd's Tortoise and Hare (Cycle Detection)

class Solution {
    public int findDuplicate(int[] nums) {
        int slow = 0;
        int fast = 0;

        slow = nums[slow];
        fast = nums[nums[fast]];


        // Phase 1: Find the intersection point in the cycle
        while (slow != fast){
            slow = nums[slow];
            fast = nums[nums[fast]];
        }

        // Phase 2: Find the entrance to the cycle

        slow = 0;
        while(slow != fast){
            slow = nums[slow];
            fast = nums[fast];
        }

        return slow;
    }
}

// TC: O(n)
// SC: O(1)
class Solution {
    public int findDuplicate(int[] nums) {
        Set<Integer> set = new HashSet<Integer>();

        for (int i = 0; i < nums.length; i++){
            if (set.contains(nums[i])){
                return nums[i];
            }else{
                set.add(nums[i]);
            }
        }
        return -1;
    }
}

// TC: O(n)
// SC: O(n)