378. Kth Smallest Element in a Sorted Matrix
Given an n x n
matrix
where each of the rows and columns is sorted in ascending order, return the kth
smallest element in the matrix.
Note that it is the kth
smallest element in the sorted order, not the kth
distinct element.
You must find a solution with a memory complexity better than O(n^2)
.
Example 1:
Input: matrix = [[1,5,9],[10,11,13],[12,13,15]], k = 8
Output: 13
Explanation: The elements in the matrix are [1,5,9,10,11,12,13,13,15], and the 8th smallest number is 13
Example 2:
Solution:
class Solution {
public int kthSmallest(int[][] matrix, int k) {
PriorityQueue<int[]> pq = new PriorityQueue<int[]>((a, b) -> a[0] - b[0]);
int n = matrix.length;
for (int i = 0; i < n; i++){
pq.offer(new int[]{matrix[i][0], i ,0});
// value, row, col
}
for (int i = 0; i < k - 1; i++){
int[] cur = pq.poll();
if (cur[2] != n - 1){ // last col
pq.offer(new int[]{matrix[cur[1]][cur[2] + 1], cur[1], cur[2] + 1});
// x, y + 1, x . y + 1
}
}
return pq.poll()[0];
}
}
// TC: O(klogn)
// SC: O(n)
class Solution {
public int kthSmallest(int[][] matrix, int k) {
PriorityQueue<int[]> pq = new PriorityQueue<int[]>(new Comparator<int[]>(){
public int compare(int[] a, int[] b){
return a[0] - b[0];
}
});
int n = matrix.length;
for (int i = 0; i < n; i++){
pq.offer(new int[]{matrix[i][0], i ,0});
// value, row, col
}
for (int i = 0; i < k - 1; i++){
int[] cur = pq.poll();
if (cur[2] != n - 1){ // last col
pq.offer(new int[]{matrix[cur[1]][cur[2] + 1], cur[1], cur[2] + 1});
// x, y + 1, x . y + 1
}
}
return pq.poll()[0];
}
}
// TC: O(klogn)
// SC: O(n)
class Solution {
static class Cell{
int row;
int col;
int value;
Cell(int row, int col, int value){
this.row = row;
this.col = col;
this.value = value;
}
}
public int kthSmallest(int[][] matrix, int k) {
int rows = matrix.length;
int cols = matrix[0].length;
boolean[][] visited = new boolean[rows][cols];
PriorityQueue<Cell> minHeap = new PriorityQueue<Cell>(k, new Comparator<Cell>(){
@Override
public int compare(Cell c1, Cell c2){
if (c1.value == c2.value){
return 0;
}else if (c1.value < c2.value){
return -1;
}else {
return 1;
}
}
});
minHeap.offer(new Cell(0, 0, matrix[0][0]));
visited[0][0] = true;
for (int i = 1; i < k; i++){
Cell cur = minHeap.poll();
if (cur.row + 1 < rows && !visited[cur.row + 1][cur.col]){
minHeap.offer(new Cell(cur.row + 1, cur.col, matrix[cur.row+1][cur.col]));
visited[cur.row+ 1][cur.col] = true ;
}
if (cur.col + 1 < cols && !visited[cur.row][cur.col+1]){
minHeap.offer(new Cell(cur.row, cur.col +1, matrix[cur.row][cur.col+1]));
visited[cur.row][cur.col+1] = true ;
}
}
return minHeap.peek().value;
}
}
// TC: O(nlogn)
// SC: O(n)
class Solution {
public static int kthSmallest(int[][] matrix, int k){
int n = matrix.length; // 3 //
int m = matrix[0].length; // 3
PriorityQueue<Integer> pq = new PriorityQueue<>();
for (int i = 0; i < n; i++){
for (int j = 0; j < m; j++){
pq.offer(matrix[i][j]);
}
}
for (int i = 0; i < k - 1; i++){
pq.poll();
}
return pq.poll();
}
}
// TC: O(n^2logn)
// SC: O(n^2)