Skip to content

5. Longest Palindromic Substring

Given a string s, return the longest palindromic substring in s.

Example 1:

Input: s = "babad"
Output: "bab"
Explanation: "aba" is also a valid answer.

Example 2:

Input: s = "cbbd"
Output: "bb"

Constraints:

  • 1 <= s.length <= 1000
  • s consist of only digits and English letters.

Solution:

i 0 1 2 3 4
j b a b a d
0 b (0,0) b T (1,0) x
1 a (0,1)ba F (1,1) a T
2 b (0,2)bab T (1,2)ab F (2,2) b T
3 a (0,3)baba F (1,3)aba T (2,3)ba F (3,3)a T
4 d (0,4)babad F (1,4)abad F (2,4)bad F (3,4)ad F (4,4)d T

很有意思的题目 ?????? <- 年少留下些什么评语???! 况且也不年少了.

class Solution {
    public String longestPalindrome(String s) {
        for (int len = s.length(); len > 0; len--){// check current len wether avaliable
            for (int start = 0; start <= s.length() - len; start++){
                // 0 , start <= start <= 5 - 4 = 1    start: [0, 1]
                // 0, start <= start <= 5 - 3 = 2     start:[0, 1, 2]
                // start <= s.length() - len make sure check the current len
                if (check(start, start + len, s)){
                    // 
                    // 0, 5, babad
                    return s.substring(start, start + len);
                }
            }
        }

        return "";

    }

    private boolean check(int i, int j, String s){
        int left = i;
        int right = j-1;

        while(left < right){
            if (s.charAt(left) != s.charAt(right)){
                return false;
            }

            left++;
            right--;
        }

        return true;
    }
}


// TC: O(n^3)
// SC: O(1)

/*

        b a b  a d
        l        r 
        0   end            b a b
          1    end          a b a 
            2   end          ba d

        s     len - 1         b a b a d 
                              s     

        b a b a d 
        s      end 



        b a b a d
         s    end

        s:[ 0 , 1]       length - end


           b
 for ( end ){

    s
 }
*/

Dynamic Programming:

class Solution {
    public String longestPalindrome(String s) {
        int n  = s.length();
        boolean[][] dp = new boolean[n][n];

        int[] ans = new int[]{0,0};
        // ans stores the start and end indices of the longest palindromic substring found


        // Initializes all single-character substrings as palindromes 
        // because any single character is inherently a palindrome.
        for (int i = 0; i < n; i++){
            dp[i][i] = true;
        }
        //   0  1  2  3  4
        //   b  a  b  a  d
        //b  T, _, _, _, _
        //a  _, T, _, _, _   i+1      (ba)
        //b  _, _, T, _, _
        //a  _, _, _, T, _
        //d  _, _, _, _, T 
        ///     i 

        // dp[i][j] means from i to j whether palindromic


        // This loop checks all consecutive character pairs in the string 
        // and marks them as palindromes in dp 
        // if they are the same. It also updates ans to these indices 
        // if a palindrome is found, considering two-character substrings.
        for (int i = 0; i < n - 1; i++){
            if (s.charAt(i) == s.charAt(i + 1)){
                dp[i][i + 1] = true;
                ans[0] = i;
                ans[1] = i + 1;
            };

        }

        // The outer loop gradually increases the difference between the start and 
        // end indices of the substrings being considered 
        // (diff represents the length of the substring minus one).
        for (int diff = 2; diff < n; diff++){
            // diff = 2; diff < 5; diff++
            for (int i = 0; i < n - diff; i++){
                // The inner loop iterates over all possible 
                // starting indices i for the current length.
                // i = 0; i < 5-2 =3 ; i++  i: [0, 1, 2, 3]   
                int j = i + diff; // end point 0+2 = 2 
                // j is calculated as the end index of the substring.
                if (s.charAt(i) == s.charAt(j) && dp[i + 1][j - 1]){
                    // It checks if the characters at the current start (i) and end (j) are the same
                    // if the substring between them (dp[i + 1][j - 1]) is a palindrome
                    // s.charAt(0) == s.charAt(2)
                    // dp[0+1][2-1] = dp[1][1] 
                    dp[i][j] = true;
                    ans[0] = i;
                    ans[1] = j;
                }
            }
        }

        // diff = 2
        //   0  1  2  3  4
        //   b  a  b  a  d
        //b  T, _, _, _, _
        //a  _, T, _, _, _   i+1      (ba)
        //b  _, _, T, _, _
        //a  _, _, _, T, _
        //d  _, _, _, _, T 
        ///     i 


        int start = ans[0];
        int end = ans[1];
        return s.substring(start, end + 1);
        // Returns the substring from start to end + 1 
        // (as the second argument of substring is exclusive).

    }
}

// TC: O(n^2)
// SC: O(n^2)
class Solution {
    public String longestPalindrome(String s) {
        /*
        s: 0 1 2 3 4
        0    T
        1
        2
        3
        4

        [i][j] from i j wether is palindrome
        */


        int n = s.length();

        int[] result = new int[]{0,0};
        boolean[][] memo = new boolean[n + 1][n + 1];
        for (int i = 0; i < n; i++){
            for (int j = i; j < n; j++){
                memo[i][j] = isP(s, i, j);
                if (memo[i][j] == true){
                    int cur = j - i;
                    int subR = result[1] - result[0];
                    if (subR < cur){
                        result[0] = i;
                        result[1] = j;
                    } 
                }
            }
        }

        return s.substring(result[0], result[1] +1);

    }

    private boolean isP(String s, int left, int right){
        while (left < right){
            if (s.charAt(left) != s.charAt(right)){
                return false;
            }
            left++;
            right--;
        }

        return true;
    }
}

Expand From Centers

class Solution {
    public String longestPalindrome(String s) {
        if (s == null || s.length() < 1){
            return "";
        }

        int start = 0;
        int end = 0;

        for (int i = 0; i < s.length(); i++){
            int len1 = expandFromMiddle(s, i, i);
            int len2 = expandFromMiddle(s, i, i+1);
            int len = Math.max(len1, len2);
            if (len > end - start){
                start = i - ((len -1)/2);
                end = i + (len /2);
            }

        }

        return s.substring(start, end + 1);

    }

    public int expandFromMiddle(String s, int left, int right){
        if (s == null || left > right ){
            return 0;

        }

        while(left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)){
            left--;
            right++;
        }
        return right - left - 1;
    }
}
// TC: O(n^2)

// SC: O(1)
class Solution {
    public String longestPalindrome(String s) {
        int n = s.length();
        int start = 0;
        int end = 0;

        for (int i = 0; i < n; i++){
            for (int j = 0; j <= 1; j++){
                int left = i;
                int right = i + j;
                while(left >= 0 && right <= n - 1 && s.charAt(left) == s.charAt(right)){
                    left--;
                    right++;
                }
                left++;
                right--;

                if (right - left > end - start){
                    start = left;
                    end = right;
                }
            }
        }

        return s.substring(start, end + 1);
    }
}

// TC: O(n^2)
// SC: O(1)

Manacher's Algorithm

啊这...

class Solution {
    public String longestPalindrome(String s) {
        StringBuilder sPrime = new StringBuilder("#");
        for (char c: s.toCharArray()) {
            sPrime.append(c).append("#");
        }

        int n = sPrime.length();
        int[] palindromeRadii = new int[n];
        int center = 0;
        int radius = 0;

        for (int i = 0; i < n; i++) {
            int mirror = 2 * center - i;

            if (i < radius) {
                palindromeRadii[i] = Math.min(radius - i, palindromeRadii[mirror]);
            }

            while (i + 1 + palindromeRadii[i] < n &&
                   i - 1 - palindromeRadii[i] >= 0 &&
                   sPrime.charAt(i + 1 + palindromeRadii[i]) == sPrime.charAt(i - 1 - palindromeRadii[i])) {
                palindromeRadii[i]++;
            }

            if (i + palindromeRadii[i] > radius) {
                center = i;
                radius = i + palindromeRadii[i];
            }
        }

        int maxLength = 0;
        int centerIndex = 0;
        for (int i = 0; i < n; i++) {
            if (palindromeRadii[i] > maxLength) {
                maxLength = palindromeRadii[i];
                centerIndex = i;
            }
        }

        int startIndex = (centerIndex - maxLength) / 2;
        String longestPalindrome = s.substring(startIndex, startIndex + maxLength);

        return longestPalindrome;
    }
}
// TC: O(n)
// SC: O(n)

Paper reference: https://dl.acm.org/doi/10.1145/321892.321896