64. Minimum Path Sum
Given a m x n
grid
filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example 1:
Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.
Example 2:
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 200
0 <= grid[i][j] <= 200
Solution:
class Solution {
public int minPathSum(int[][] grid) {
int rows = grid.length;
int cols = grid[0].length;
// Create a 2D array to store the minimum path sums.
int[][] dp = new int[rows][cols];
// Initialize the starting point with the first cell's value.
dp[0][0] = grid[0][0];
// Fill in the first row (can only come from the left).
for (int col = 1; col < cols; col++) {
dp[0][col] = dp[0][col - 1] + grid[0][col];
}
// Fill in the first column (can only come from above).
for (int row = 1; row < rows; row++) {
dp[row][0] = dp[row - 1][0] + grid[row][0];
}
// Fill in the rest of the dp array.
for (int row = 1; row < rows; row++) {
for (int col = 1; col < cols; col++) {
dp[row][col] = Math.min(dp[row - 1][col], dp[row][col - 1]) + grid[row][col];
}
}
// Return the value at the bottom-right corner, which is the minimum path sum.
return dp[rows - 1][cols - 1];
}
}