673 Number of Longest Increasing Subsequence
Given an integer array nums
, return the number of longest increasing subsequences.
Notice that the sequence has to be strictly increasing.
Example 1:
Input: nums = [1,3,5,4,7]
Output: 2
Explanation: The two longest increasing subsequences are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: nums = [2,2,2,2,2]
Output: 5
Explanation: The length of the longest increasing subsequence is 1, and there are 5 increasing subsequences of length 1, so output 5.
Solution:
class Solution {
public int findNumberOfLIS(int[] nums) {
if (nums == null || nums.length == 0){
return 0;
}
if (nums.length == 1){
return 1;
}
int[] dp = new int[nums.length];
int[] count = new int[nums.length];
for (int i = 0; i < nums.length; i++){
dp[i] = 1;
count[i] = 1;
}
int max = 0;
for (int i = 1; i < nums.length; i++){
for (int j = 0; j < i; j++){
if (nums[j] < nums[i]){
if (dp[j] + 1 > dp[i]){
dp[i] = dp[j] + 1;
count[i] = 0;
}
if (dp[j] + 1 == dp[i]){
count[i] = count[j] + count[i];
}
}
max = Math.max(max, dp[i]);
}
}
int result = 0;
for (int i = 0; i < nums.length; i++){
if (dp[i] == max){
result = count[i] + result;
}
}
return result;
}
}
// TC: O(n^2)
// SC: O(n)