684. Redundant Connection
In this problem, a tree is an undirected graph that is connected and has no cycles.
You are given a graph that started as a tree with n
nodes labeled from 1
to n
, with one additional edge added. The added edge has two different vertices chosen from 1
to n
, and was not an edge that already existed. The graph is represented as an array edges
of length n
where edges[i] = [ai, bi]
indicates that there is an edge between nodes ai
and bi
in the graph.
Return an edge that can be removed so that the resulting graph is a tree of n
nodes. If there are multiple answers, return the answer that occurs last in the input.
Example 1:
Example 2:
Constraints:
n == edges.length
3 <= n <= 1000
edges[i].length == 2
1 <= ai < bi <= edges.length
ai != bi
- There are no repeated edges.
- The given graph is connected.
Solution:
class Solution {
static class UnionFind {
private int[] parent;
private int[] rank;
public UnionFind(int size) {
parent = new int[size];
rank = new int[size];
for (int i = 0; i < size; i++) {
parent[i] = i;
rank[i] = 1;
}
}
public int find(int u) {
if (parent[u] != u) {
parent[u] = find(parent[u]); // Path compression
}
return parent[u];
}
public boolean union(int u, int v) {
int rootU = find(u);
int rootV = find(v);
if (rootU != rootV) {
if (rank[rootU] > rank[rootV]) {
parent[rootV] = rootU;
} else if (rank[rootU] < rank[rootV]) {
parent[rootU] = rootV;
} else {
parent[rootV] = rootU;
rank[rootU]++;
}
return true;
}
return false;
}
}
public int[] findRedundantConnection(int[][] edges) {
int n = edges.length;
UnionFind uf = new UnionFind(n + 1); // Initialize UnionFind with n + 1 because nodes are 1-indexed
for (int[] edge : edges) {
int u = edge[0];
int v = edge[1];
if (!uf.union(u, v)) {
return edge; // If u and v are already connected, this edge is redundant
}
}
return new int[0]; // This line should never be reached because there is always one redundant edge
}
}
// TC: O(n)
// SC: O(n)
class Solution {
public int[] findRedundantConnection(int[][] edges) {
int n = edges.length;
List<List<Integer>> adj = new ArrayList<List<Integer>>();
for (int i = 0; i < n; i++){
adj.add(new ArrayList<>());
}
for (int[] edge : edges){
int u = edge[0] - 1;
int v = edge[1] - 1;
boolean[] visited = new boolean[n];
// check if there is already a path between the two nodes before adding a
// and edge, this way we can identify the additional edge that needs to be removed
if (dfs(adj, u, v, visited)){
return edge;
}
adj.get(u).add(v); // otherwise add to the grapn
adj.get(v).add(u);
}
return new int[0]; // return empty list
}
private boolean dfs(List<List<Integer>> adj, int u, int v, boolean[] visited){
if (u == v){
return true;
}
visited[u] = true;
for (int next : adj.get(u)){
if (!visited[next]){
if (dfs(adj, next, v, visited)){
return true;
}
}
}
return false;
}
}
// TC: O(N^2)
// SC: O(N)
https://youtu.be/wU6udHRIkcc