72. Edit Distance
Given two strings word1
and word2
, return the minimum number of operations required to convert word1
to word2
.
You have the following three operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
Solution:
class Solution {
public int minDistance(String word1, String word2) {
int[][] dp = new int[word1.length() + 1][word2.length() + 1];
for (int i = 0; i < word1.length() + 1; i++){
dp[i][0] = i;
}
for (int j = 0; j < word2.length() + 1; j++){
dp[0][j] = j;
}
for (int i = 1; i < word1.length() + 1; i++){
for (int j = 1; j < word2.length() + 1; j++){
if (word1.charAt(i - 1) == word2.charAt(j - 1)){
dp[i][j] = dp[i- 1][j-1];
}else{
dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i-1][j], dp[i][j - 1])) + 1;
}
}
}
return dp[word1.length()][word2.length()];
}
}
// TC: O(n^2)
// SC: O(n^2)
class Solution {
public int minDistance(String word1, String word2) {
//base case
int[][] m = new int[word1.length() + 1][word2.length() + 1];
for(int i = 0; i < word1.length() + 1; i++){
m[i][0] = i;
}
for (int j = 0; j < word2.length() + 1; j++){
m[0][j] = j;
}
// induction rule
for (int i = 1; i < word1.length() + 1; i++){
for (int j = 1; j < word2.length() + 1; j++){
if (word1.charAt(i - 1) == word2.charAt(j - 1)){
m[i][j] = m[i-1][j-1];
}else{
m[i][j] = Math.min(m[i-1][j-1], Math.min(m[i-1][j], m[i][j-1])) + 1;
}
}
}
return m[word1.length()][word2.length()];
}
}
/*
// TC: O(n^2)
// SC: O(n^2)
base case
j 0 1 2 3
word2| - r o s ""
i word1
----
0 - 0 1 2 3
1 h 1 1 2 3
2 o 2 2 1 2
3 r 3 2 2 2
4 s 4 3 3 2
5 e 5 4 4 3
m[i][j]: present the minmum number pf operations required to covert word1 begin to i and change to the word2 begin to j
induction rule:
if (word1(i) == word2(j)){
m[i][j] = m[i-1][j-1]
}else{
m[i][j] = Math.min(m[i-1][j-1], m[i-1][j], m[i][j-1])+1
}
return m[word1.length][word2.length]
*/