Skip to content

72. Edit Distance

Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2.

You have the following three operations permitted on a word:

  • Insert a character
  • Delete a character
  • Replace a character

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation: 
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation: 
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

Solution:

class Solution {
    public int minDistance(String word1, String word2) {
        int[][] dp = new int[word1.length() + 1][word2.length() + 1];

        for (int i = 0; i < word1.length() + 1; i++){
            dp[i][0] = i;
        }

        for (int j = 0; j < word2.length() + 1; j++){
            dp[0][j] = j;
        }

        for (int i = 1; i < word1.length() + 1; i++){
            for (int j = 1; j < word2.length() + 1; j++){
                if (word1.charAt(i - 1) == word2.charAt(j - 1)){
                    dp[i][j] = dp[i- 1][j-1]; 
                }else{
                    dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i-1][j], dp[i][j - 1])) + 1;
                }
            }
        }

        return dp[word1.length()][word2.length()];
    }
}


// TC: O(n^2)
// SC: O(n^2)
class Solution {
    public int minDistance(String word1, String word2) {
        //base case 
        int[][] m = new int[word1.length() + 1][word2.length() + 1];
        for(int i = 0; i < word1.length() + 1; i++){
            m[i][0] = i;
        }

        for (int j = 0; j < word2.length() + 1; j++){
            m[0][j] = j;
        }

        // induction rule
        for (int i = 1; i < word1.length() + 1; i++){
            for (int j = 1; j < word2.length() + 1; j++){
                if (word1.charAt(i - 1) == word2.charAt(j - 1)){
                    m[i][j] = m[i-1][j-1];
                }else{
                    m[i][j] = Math.min(m[i-1][j-1], Math.min(m[i-1][j], m[i][j-1])) + 1;
                }
            }
        }

        return m[word1.length()][word2.length()];
    }
}


/*

// TC: O(n^2)
// SC: O(n^2)

base case
             j     0 1 2 3
            word2| - r o s             ""
  i word1    
    ----   
  0   -             0 1 2 3
  1   h             1 1 2 3 
  2   o             2 2 1 2
  3   r             3 2 2 2
  4   s             4 3 3 2
  5   e             5 4 4 3

  m[i][j]: present the minmum number pf operations required to covert word1 begin to i and change to the word2 begin to j

induction rule:
if (word1(i) == word2(j)){
    m[i][j] = m[i-1][j-1]
}else{
    m[i][j] = Math.min(m[i-1][j-1], m[i-1][j], m[i][j-1])+1
}


return m[word1.length][word2.length]

*/