73 Combinations Of Coins (Lai)
Given a number of different denominations of coins (e.g., 1 cent, 5 cents, 10 cents, 25 cents), get all the possible ways to pay a target number of cents.
Arguments
- coins - an array of positive integers representing the different denominations of coins, there are no duplicate numbers and the numbers are sorted by descending order, eg. {25, 10, 5, 2, 1}
- target - a non-negative integer representing the target number of cents, eg. 99
Assumptions
- coins is not null and is not empty, all the numbers in coins are positive
- target >= 0
- You have infinite number of coins for each of the denominations, you can pick any number of the coins.
Return
- a list of ways of combinations of coins to sum up to be target.
- each way of combinations is represented by list of integer, the number at each index means the number of coins used for the denomination at corresponding index.
Examples
coins = {2, 1}, target = 4, the return should be
[
[0, 4], (4 cents can be conducted by 0 * 2 cents + 4 * 1 cents)
[1, 2], (4 cents can be conducted by 1 * 2 cents + 2 * 1 cents)
[2, 0] (4 cents can be conducted by 2 * 2 cents + 0 * 1 cents)
]
Solution:
public class Solution {
public List<List<Integer>> combinations(int target, int[] coins) {
// Write your solution here
List<List<Integer>> result = new ArrayList<List<Integer>>();
List<Integer> cur = new ArrayList<Integer>();
helper(target, coins, 0, cur, result);
return result;
}
private static void helper(int target, int[] coins, int index, List<Integer> cur, List<List<Integer>> result){
if (index == coins.length){
if (target == 0){
result.add(new ArrayList<Integer>(cur));
}
return;
}
int max = target/coins[index]; // 最大能取这层硬币多少个
for (int i = 0; i <= max; i++){
cur.add(i);
target = target - i * coins[index];
helper(target, coins, index+1, cur,result);
//helper(target - i * coins[index], coins, index + 1, cur, result);
cur.remove(cur.size() - 1);
}
}
}
// TC: O(n^n)
// SC: O(n)