76. Minimum Window Substring
Given two strings s
and t
of lengths m
and n
respectively, return the *minimum window substring **
of s
such that every character in t
(including duplicates) is included in the window. If there is no such substring, return the empty string ""
.
The testcases will be generated such that the answer is unique.
Example 1:
Input: s = "ADOBECODEBANC", t = "ABC"
Output: "BANC"
Explanation: The minimum window substring "BANC" includes 'A', 'B', and 'C' from string t.
Example 2:
Example 3:
Input: s = "a", t = "aa"
Output: ""
Explanation: Both 'a's from t must be included in the window.
Since the largest window of s only has one 'a', return empty string.
Constraints:
m == s.length
n == t.length
1 <= m, n <= 105
s
andt
consist of uppercase and lowercase English letters.
Follow up: Could you find an algorithm that runs in O(m + n)
time?
Solution:
class Solution {
public String minWindow(String s, String t) {
if (s.length() < t.length()){
return "";
}
Map<Character, Integer> map = new HashMap<>();
for (int i = 0; i < t.length(); i++){
map.put(t.charAt(i), map.getOrDefault(t.charAt(i), 0) + 1);
}
int slow = 0;
int count = t.length();
int startInd = 0;
int minLength = Integer.MAX_VALUE;
for (int fast = 0; fast < s.length(); fast++){
char curFast = s.charAt(fast);
if (map.containsKey(curFast)){
int curFastCount = map.get(curFast);
if (curFastCount > 0){
count--;
}
map.put(curFast, curFastCount - 1);
}
while(count == 0){
if (fast - slow + 1 <= minLength){
minLength = fast - slow + 1;
startInd = slow;
}
if (!map.containsKey(s.charAt(slow))){
slow++;
}else{
if (map.get(s.charAt(slow)) == 0){
count++;
}
map.put(s.charAt(slow), map.get(s.charAt(slow)) + 1);
slow++;
}
}
}
if (minLength == Integer.MAX_VALUE){
return "";
}else{
return s.substring(startInd, startInd + minLength);
}
}
}
// TC: O(m + n)
// SC: O(n) -> O(1)
class Solution {
public String minWindow(String s, String t) {
if (s.length() < t.length()){
return "";
}
Map<Character, Integer> map = new HashMap<Character, Integer>();
int slow = 0;
int fast = 0;
int minLength = Integer.MAX_VALUE;
int count = t.length();
int startInd = 0;
for (int i = 0; i < t.length(); i++){
map.put(t.charAt(i), map.getOrDefault(t.charAt(i), 0) + 1);
}
while(fast < s.length()){
char curFast = s.charAt(fast);
if (map.containsKey(curFast)){
int curFastCount = map.get(curFast);
if (curFastCount > 0){
count--;
}
map.put(curFast, curFastCount - 1);
}
fast++;
while(count == 0){
if (fast - slow < minLength){
minLength = fast - slow;
startInd = slow;
}
char curSlow = s.charAt(slow);
if (!map.containsKey(curSlow)){
slow++;
}else {
// contains
int curSlowCount = map.get(curSlow);
if (curSlowCount == 0){
count++;
}
map.put(curSlow, curSlowCount + 1);
slow++;
}
}
}
if (minLength == Integer.MAX_VALUE){
return "";
}else{
return s.substring(startInd, startInd + minLength);
}
}
}
class Solution {
public String minWindow(String s, String t) {
if (t.length() > s.length()){
return "";
}
Map<Character, Integer> freq = new HashMap<Character, Integer>();
for (int i = 0; i < t.length(); i++){
freq.put(t.charAt(i), freq.getOrDefault(t.charAt(i), 0) + 1);
}
int slow = 0;
int fast = 0;
int count = t.length();
int minLength = Integer.MAX_VALUE;
int startInd = 0;
while(fast < s.length()){
// // 每次遇到t中的字符,减少需要匹配的数量
if (freq.containsKey(s.charAt(fast))){
if (freq.get(s.charAt(fast)) > 0){
count--;
}
freq.put(s.charAt(fast), freq.get(s.charAt(fast)) - 1);
}
fast++;
while(count == 0){
if (fast - slow <= minLength){
minLength = fast - slow;
startInd = slow;
}
if (!freq.containsKey(s.charAt(slow))){
slow++;
}else{
if (freq.get(s.charAt(slow)) == 0){
count++;
}
freq.put(s.charAt(slow), freq.get(s.charAt(slow)) + 1);
slow++;
}
// 为什么要增加 count?因为当频率为 0 时,表示当前窗口已经完全包含了 t 中的所有该字符。如果我们右移 slow 指针,将这个字符移出窗口,意味着我们不再满足窗口内的完整性,所以我们需要增加 count,表示还需要一个这样的字符来恢复完整性
}
}
if (minLength == Integer.MAX_VALUE){
return "";
} else {
return s.substring(startInd, startInd + minLength);
}
}
}
// TC: O(n)
// SC: O(n)
/*
s = "ADOBECODEBANC", t = "ABC" Map<Character, Integer> freq
s
f
count 1
A : 1
B : 1
C : 1
*/