785 Is Graph Bipartite?
There is an undirected graph with n
nodes, where each node is numbered between 0
and n - 1
. You are given a 2D array graph
, where graph[u]
is an array of nodes that node u
is adjacent to. More formally, for each v
in graph[u]
, there is an undirected edge between node u
and node v
. The graph has the following properties:
- There are no self-edges (
graph[u]
does not containu
). - There are no parallel edges (
graph[u]
does not contain duplicate values). - If
v
is ingraph[u]
, thenu
is ingraph[v]
(the graph is undirected). - The graph may not be connected, meaning there may be two nodes
u
andv
such that there is no path between them.
A graph is bipartite if the nodes can be partitioned into two independent sets A
and B
such that every edge in the graph connects a node in set A
and a node in set B
.
Return true
if and only if it is bipartite**.
Example 1:
Input: graph = [[1,2,3],[0,2],[0,1,3],[0,2]]
Output: false
Explanation: There is no way to partition the nodes into two independent sets such that every edge connects a node in one and a node in the other.
Example 2:
Input: graph = [[1,3],[0,2],[1,3],[0,2]]
Output: true
Explanation: We can partition the nodes into two sets: {0, 2} and {1, 3}.
Solution:
class Solution {
public boolean isBipartite(int[][] graph) {
int n = graph.length;
int[] color = new int[n];
for (int i = 0; i < n; i++){
color[i] = -1;
}
for (int i = 0; i < n; i++){
if (color[i] == -1){
if (bfs(i, graph, color) == false){
return false;
}
}
}
return true;
}
public static boolean bfs(int node, int graph[][], int[] color){
Queue<Integer> queue = new LinkedList<Integer>();
queue.offer(node);
color[node] = 0;
while(!queue.isEmpty()){
int cur = queue.poll();
for (int nei : graph[cur]){
if (color[nei] == -1){
if (color[cur] == 0){
color[nei] = 1;
}else{
color[nei] = 0;
}
queue.add(nei);
}else if (color[nei] == color[cur]){
return false;
}
}
}
return true;
}
}
//TC: O(N+E)
//SC: O(n)
class Solution {
public boolean isBipartite(int[][] graph) {
int n = graph.length; // graph length 4
int[] colors = new int[n];
for (int i = 0; i < n; i++){
colors[i] = -1;
}
for (int node = 0; node < n; node++){
if (colors[node] == -1){
// has not visit
Stack<Integer> stack = new Stack(); // [ 0
stack.push(node);
colors[node] = 0;
while(!stack.empty()){
Integer cur = stack.pop(); // 0
for (int nei : graph[cur]){
if (colors[nei] == -1){
// not visited
stack.push(nei);
// colors[nei] = colors[cur] ^ 1;
if (colors[cur] == 0){
colors[nei] = 1;
}else{
colors[nei] = 0;
}
}else if (colors[nei] == colors[cur]){
return false;
}
}
}
}
}
return true;
}
}
// TC:O(n)
// SC:O(n)