951. Flip Equivalent Binary Trees
For a binary tree T, we can define a flip operation as follows: choose any node, and swap the left and right child subtrees.
A binary tree X is flip equivalent to a binary tree Y if and only if we can make X equal to Y after some number of flip operations.
Given the roots of two binary trees root1
and root2
, return true
if the two trees are flip equivalent or false
otherwise.
Example 1:
Input: root1 = [1,2,3,4,5,6,null,null,null,7,8], root2 = [1,3,2,null,6,4,5,null,null,null,null,8,7]
Output: true
Explanation: We flipped at nodes with values 1, 3, and 5.
Example 2:
Example 3:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean flipEquiv(TreeNode root1, TreeNode root2) {
// base case
if (root1 == null && root2 == null){
return true;
}
if (root1 != null && root2 == null){
return false;
}
if (root1 == null && root2 != null){
return false;
}
// !=null
if (root1.val != root2.val){
return false;
}
return (flipEquiv(root1.left, root2.right) && flipEquiv(root1.right, root2.left)) || (flipEquiv(root1.right, root2.right) && flipEquiv(root1.left, root2.left));
}
}
Complexity Analysis
- Time Complexity: O(min(N1,N2)), where N1,N2 are the lengths of
root1
androot2
. - Space Complexity: O(min(H1,H2)), where H1,H2 are the heights of the trees of
root1
androot2
.
举一反三
Q3: Let's assume if we tweak the Ichild with child of an arbitrary node in a binary tree, then the "structure" of the tree are not changed. Then how can we determine whether two binary trees' structures are identical. (Twist Identical?)
8a 8b
/ \ / \
4 5 5 4
\ /
7 7
Case1. 8a AND 8b OR Case2. 8a AND 8b
/ \ / \ / \ / \
4a 5a 4b 5b 4a 5a 5b 4b
| | | |
7 7 7 7
可以和原来一样也可以不一样
Base Case:
if (left == null && right == null){
return true; // base case1
} else if (left == null || right == null){
return false; // base case 2+3
} else if (left.value != right.value){
return false; // base case 4
}
Subproblem & Recursion rule
8a VS 8b
Case 1: Identical
twistldentical(8a's left, 8b's left) && twistLdentical(8a'right, 8b's right)
||
Case 2: Symmetric
twistldentical(8a's left, 8b's right) && twistldentical(8a' right, 8b's left)
有四个子问题
- twistldentical(8a's left, 8b's left)
- twistLdentical(8a'right, 8b's right)
- twistldentical(8a's left, 8b's right)
- twistldentical(8a' right, 8b's left)
recursion Tree(root1, root2)
/ / \ \
(root1.L, root2.L) (root1.R, root2.R) (root1.L, root2.R) (root1.R, root2.R)
假设是balance: 有 logn层
branch:每层有4个点
Binary Tree of H levels, time complexity = O(\(2^H\)) H= logn 2^logn=n
Given a Quadral Tree if we have n levels Time = O(4^n) => O(4^level)
Time: O(\(4^{log_{2}n} = 2^{2{log_{2}n} }= 2^{log_{2}n^2} = n^2\))
这道题: recursion Tree的高度是不是取决于input tree高度
如果input tree 是balance这道题recursion Tree高度=\(log_2n\)
assume is balance -> we have \(log_2n\) as height
We have an array tree with \(log_2n\) height => O(\(4^{log_2n}\))
|
input tree 高度
Insight, what if the tree is not balanced? (such at linkedList) 其实这个要比上面的case好 -> best case
1 1
/ \ / \
4 null null 4
| |
5 5
recursion Tree(root1, root2)
/ / \ \
~~(root1.L, root2.L) (root1.R, root2.R)~~ (root1.L, root2.R) ~~(root1.R, root2.R)~~
4 null null 4 4 4 null null
package Class5BinaryTreeAndBinarySearchTree.Assignments;
/*
50. Tweaked Identical Binary Trees
Determine whether two given binary trees are identical assuming any number of ‘tweak’s are allowed.
A tweak is defined as a swap of the children of one node in the tree.
Examples
5
/ \
3 8
/ \
1 4
and
5
/ \
8 3
/ \
1 4
the two binary trees are tweaked identical.
How is the binary tree represented?
We use the level order traversal sequence with a special symbol "#" denoting the null node.
For Example:
The sequence [1, 2, 3, #, #, 4] represents the following binary tree:
1
/ \
2 3
/
4
*/
public class Ex7TweakedIdenticalBinaryTrees {
public static class TreeNode{
public int value;
public TreeNode left;
public TreeNode right;
public TreeNode(int value){
this.value = value;
}
}
public static void main(String[] args){
TreeNode root5 = new TreeNode(5);
TreeNode root3 = new TreeNode(3);
TreeNode root1 = new TreeNode(1);
TreeNode root4 = new TreeNode(4);
TreeNode root8 = new TreeNode(8);
root5.left = root3;
root5.right = root8;
root3.left = root1;
root3.right = root4;
TreeNode r5 = new TreeNode(5);
TreeNode r3 = new TreeNode(3);
TreeNode r1 = new TreeNode(1);
TreeNode r4 = new TreeNode(4);
TreeNode r8 = new TreeNode(8);
r5.right = r3;
r5.left = r8;
r3.left = r1;
r3.right = r4;
System.out.println(isTweak(root5,r5));
}
public static boolean isTweak(TreeNode root1, TreeNode root2){
if (root1 == null && root2 == null){
return true; // base case1 两个点都是null
} else if (root1 == null || root2 == null){
return false; // base case2 两个点有一个是null
} else if (root1.value != root2.value){ // 两个点不是null 但值不同的时候
return false;
}
// Subproblem
// case1: identical || case2: Symmetric
if ((isTweak(root1.left, root2.left) && isTweak(root1.right, root2.right)) ||
(isTweak(root1.left, root2.right) && isTweak(root1.right, root2.left))){
return true;
} else{
return false;
}
}
// Time: O(n^2)
// Space: O(height)
}