994. Rotting Oranges
You are given an m x n
grid
where each cell can have one of three values:
0
representing an empty cell,1
representing a fresh orange, or2
representing a rotten orange.
Every minute, any fresh orange that is 4-directionally adjacent to a rotten orange becomes rotten.
Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return -1
.
Example 1:
Example 2:
Input: grid = [[2,1,1],[0,1,1],[1,0,1]]
Output: -1
Explanation: The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting only happens 4-directionally.
Example 3:
Input: grid = [[0,2]]
Output: 0
Explanation: Since there are already no fresh oranges at minute 0, the answer is just 0.
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 10
grid[i][j]
is0
,1
, or2
.
Solution:
class Solution {
public int orangesRotting(int[][] grid) {
int row = grid.length;
int col = grid[0].length;
int[][] visited = grid;
Deque<int[]> queue = new ArrayDeque<>();
int countFreshOrange = 0;
for (int i = 0; i < row; i++){
for (int j = 0; j < col; j++){
if (visited[i][j] == 2){
queue.offerLast(new int[]{i, j});
}
if (visited[i][j] == 1){
countFreshOrange++;
}
}
}
if (countFreshOrange == 0){
return 0;
}
if (queue.isEmpty()){
return -1;
}
int minutes = -1;
int[][] dirs = {{1, 0}, {-1, 0}, {0, -1}, {0, 1}};
while(!queue.isEmpty()){
int size = queue.size();
for (int i = 0; i < size; i++){
int[] cur = queue.pollFirst();
int x = cur[0];
int y = cur[1];
for (int[] dir : dirs){
int nX = x + dir[0];
int nY = y + dir[1];
if (nX >= 0 && nX < row && nY >= 0 && nY < col && visited[nX][nY] == 1){
visited[nX][nY] = 2;
countFreshOrange--;
queue.offerLast(new int[]{nX, nY});
}
}
}
minutes++;
}
if (countFreshOrange == 0){
return minutes;
}
return -1;
}
}
// TC: O(n^2)
// SC: O(n^2)